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Abstract
In this paper we investigate the motion of one dimensional graphs under anisotropic

non-convex mean curvature flow regularized via a Willmore term. Aiming at un-
derstanding the evolution problem when we let the regularization parameter tend
to zero, we first present rigorous analytical results for the stationary case. Sub-
sequently we discuss the time dependent problem focussing mainly on numerical
simulations. We discretize by finite elements,provide a semi implicit scheme and
a number of numerical experiments.
MSC2010: 35G31, 65M60, 35Q99.
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1 Introduction

In recent years many authors have studied curvature-dependent interface motion un-
der several kinds of interfacial energies. In applications where a planar sharp phase-
interface is modelled, one is typically interested in evolution equations of type

b(θ)V =
(
f (θ) + f ′′(θ)

)
κ − F, (1.1)

relating the normal velocity V to the curvature κ (see Angenent and Gurtin [1] and
Gurtin’s monograph [16]). Here θ stands for the angle of the interface normal to some
fixed axis, b is a positive map that characterizes the kinetics and measures the drag
opposing interfacial motion, f is the interfacial energy, and F is the difference in bulk
energy between phases.

There are numerous extensions and generalizations of (1.1). In fact, it is a special case
of a general geometric evolution equation V = Φ(x, ν, κ) where the normal velocity
depends on position, normal direction, and curvature. Besides the well known motion
by mean curvature (V = κ) and all its anisotropic variants, many physical processes are
naturally associated to evolution laws of this kind, see for instance Deckelnick, Dziuk,
and Elliott [12], Bellettini [2] and references given in there.

It is well known that material scientists also use energies for which ( f + f ′′) is negative
on some intervals (see for instance references given in Gurtin and Jabbour [17]). The
problem with this approach is that the associated evolution equation becomes forward-
backward parabolic. To deal with the inherent instability one usually adds a higher or-
der term to the surface energy. The regularization proposed by Angenent and Gurtin [1]
and subsequently studied by Di Carlo, Gurtin, and Podio-Guidugli [13] has the form

b(θ)V =
(
f (θ) + f ′′(θ)

)
κ − F − ε2

(
κss + 1

2κ
3
)

(s = arc-length) (1.1ε)

with ε > 0 small, and leads to a fourth oder evolution equation (cf. Spencer [22] and
references therein for an overview over this approach).

In this paper we start an investigation of motion of one dimensional graphs under
anisotropic non-convex mean curvature flow regularized via a Willmore term. More
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precisely we consider the L2-gradient flow of the energy

Eε : u 7→
∫

graph u
γ(ν) dA + ε2

∫
graph u

κ2 dA, ε > 0, (1.2)

where κ denotes the curvature of the graph of u, ν its unit normal, and γ is non-convex.
In other words we study the functional

Eε : u 7→
∫ 1

0

(
g(ux(x)) + ε2 uxx(x)2

(1 + ux(x)2)5/2

)
dx, (4.1)

where g(y) := γ(y,−1). Note that with ν = (cos θ, sin θ) and γ(ν) = f (θ) one eas-
ily recovers the evolution equation (1.1ε) (with F ≡ 0 and b ≡ 1) and that the non-
convexity of γ is related to the negative sign of ( f + f ′′) (see Section 5, in particular
Remark 5.1). The curvature-dependent regularization term in Equation (4.1), which
is analytically far more complicated than ε2u2

xx, is motivated in Di Carlo, Gurtin, and
Podio-Guidugli [13], where a derivation of (1.1ε) is discussed.

The problem of anisotropic flows with curvature regularization has already been con-
sidered from a numerical point of view in Haußer and Voigt [19] (motion of curves in
the plane, parametric setting) and in Burger, Haußer, Stöcker, and Voigt [7] (level-set
approach). Furthermore very interesting numerical experiments with non-convex func-
tionals are presented in Fierro, Goglione, and Paolini [15]: in particular the simulations
indicate that in general a non-convex anisotropy and its convexification can give rise
to different evolutions (in [15] the original equations are approximated by means of
a full discretization, which is always well-posed for fixed values of the discretization
parameters).

The fourth order evolution equation associated with (4.1) takes the form

ut√
1 + u2

x

= g′′(ux)uxx −
ε2

(1 + u2
x)1/2

(
2

uxxxx

(1 + u2
x)2 − 20

uxuxxuxxx

(1 + u2
x)3 +

u3
xx

(1 + u2
x)4 (30u2

x − 5)
)

(5.2)
plus boundary conditions.

Our long term plan is to try to understand (5.2) in the limit ε↘ 0. This is far from being
a trivial task as also pointed out in Bellettini, Fusco, and Guglielmi [4] where a similar
one dimensional problem is studied from an analytical and numerical point of view
(there the authors consider the gradient flow associated to the functional

∫
I φ(ux) dx +

ε2
∫

I u2
xx dx with non-convex φ; see also Bellettini and Fusco [3] and references therein).

Our hope is that the physical consistency of the model we have chosen will strongly
help in the derivation of a meaningful notion of weak solution for (5.2) when ε tends
to zero. For the stationary case Spencer [22] studies the effect of the regularization on
the equilibrium shape.

In this work we present first steps in this direction: we start by analyzing the stationary
problem for the functional E0 (cf. (2.4)) defined on

Cα, β :=
{
u ∈ H1,1(0, 1)

∣∣∣ u(0) = α, u(1) = β
}
, α, β ∈ R, (2.3)

(Section 3) as well as for Eε(u), u ∈ Cα, β ∩ H2,2(0, 1) (Section 4). Using some ideas
of Carr, Gurtin, and Slemrod [9] and further simple but beautiful geometric arguments
we derive a number of properties for the minimizers of Eε, 0 < ε � 1. Let us here
mention that for a situation as depicted in Figure 1 with ω = β − α ∈ (1, 2) we show
that
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(i) there exist minimizers of the form(
uε : x 7→ α +

∫ x

0
vε(ξ) dξ

)
∈ Cα, β ∩ H2,2(0, 1) (4.3)

where vε is a strictly monotone map with image lying in a fixed bounded interval
[z−ω, z

+
ω] determined by g,

(ii) minimizers uε of Eε in Cα, β ∩H2,2(0, 1) satisfy the uniform bound ‖uε‖H1,∞(0,1) ≤

C, where C does not depend on ε, and

(iii) a sequence of convex minimizers uε converges to ¯̄u in H1,p(0, 1) for p ∈ [1,∞),
where ¯̄u(x) = α +

∫ x
0

¯̄v(ξ) dξ and ¯̄v is an increasing step function taking only two
values, namely

¯̄v := z−ωχ(−∞,x∗) + z+
ωχ(x∗,∞) where z−ωx∗ + z+

ω(1 − x∗) ≡ ω (4.11)

and χ· is the characteristic function.

(More details can be found in Theorem 4.1 and Corollary 4.2.)

The method of proof makes clear in which way the regularization term selects some
of the minimizers for E0. One could obtain similar statements also by using Gamma-
convergence analysis but it turns out that in this case a direct analysis is less compli-
cated and has in our opinion the advantage to be very transparent.

In the second part of this paper we tackle the evolution problem. After a derivation
of the classical formulation of the flow in Section 5 we shortly discuss the difficulties
that arise when we analyse the evolution in the limit ε ↘ 0 (Section 6). In order to
get an idea of what should be expected, we discretize the problem by the finite ele-
ment method (Section 8), we provide a semi-implicit scheme (as opposed to Bellettini
et al. [4] who employ a Radau-IIA Runge-Kutta method) and a number of numerical
simulations (Subsection 9.3). The choice of numerical tests pays particular attention
to the phenomenon of (ε-dependent) microstructures formation (“wrinkles”), that is
observed during the first stage of the evolution and that is theoretically reviewed in
Section 7.

Acknowledgements. We are greatly indebted to C. M. Elliott for suggesting the topic
and for several very stimulating discussions. Furthermore we would like to thank
G. Dziuk for many helpful conversations and the DFG Transregional Collaborative Re-
search Centre SFB TR 71 for its generous financial support.

2 Preliminaries and notation

We will consider anisotropy functions γ : R2 → [0,∞), that are Lipschitz continuous,
positive, and positively homogeneous of degree one, i. e.

γ ∈ C0,1(R2),(L)
γ(p) > 0 for p , 0,(P)

γ(λp) = |λ| γ(p) for λ ∈ R, p ∈ R2.(H)
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Conditions (H) and (L) ensure the existence of a global Lipschitz constant for γ. Note
that the above assumptions on the anisotropy function γ allow for a wide class of Frank
diagrams

Fγ :=
{

p ∈ R2
∣∣∣ γ(p) ≤ 1

}
. (2.1)

Indeed, these can be non-convex or crystalline. The isotropic case is recovered by
choosing γ(p) = |p|.

In what follows we will be concerned with the study of the functional

E0 : u 7→
∫

graph u
γ(ν) dA, u ∈ Cα, β, (2.2)

where ν is the (Euclidean) normal to the graph of u,

Cα, β :=
{
u ∈ H1,1(0, 1)

∣∣∣ u(0) = α, u(1) = β
}
, α, β ∈ R, (2.3)

and γ is in general non-convex. Since ν(x, u(x)) =
(ux(x),−1)√

1+ux(x)2
, we can write

E0(u)
(2.2)
=

∫
graph u

γ(ν) dA
(H)
=

∫ 1

0
g(ux(x)) dx, (2.4)

where (
g : y 7→ γ(y,−1)

)
∈ C0,1(R, (0,∞)). (2.5)

Some examples of functions g and related Frank diagrams (2.1) are given in Figures 1,
2, and 4. Moreover from

0 < c0 := min
τ∈S 1

γ(τ) ≤ γ(ν) ≤ max
τ∈S 1

γ(τ) =: c0 < ∞

we infer from (H) that

c0 ≤ c0

√
1 + ux(x)2 ≤ g(ux(x)) ≤ c0

√
1 + ux(x)2,

thus E0(u) is well-defined. Moreover we deduce that g grows linearly at infinity and
has at least one minimum point. We set

g∞ := γ(±1, 0)
(H)
= lim

y→±∞

g(y)
|y|

.

Sometimes it is convenient to express the Frank diagram though a 2π-periodic radial
function % : R/2πZ→ (0,∞) via

Fγ =

{
λ

(
cosϕ
sinϕ

) ∣∣∣∣∣∣ϕ ∈ [0, 2π], λ ∈ [0, %(ϕ)]
}
.

The maps γ, g and % relate through

%(ϕ) =
1

γ(cosϕ, sinϕ)
=

1
|sinϕ| g(cot(−ϕ))

and g(y) =

√
1 + y2

%(arccot(−y))
. (2.6)

We will use these expressions in Section 9.
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Recall that the curvature of the graph of (a sufficiently smooth) u is given by κ(x, u(x)) =

uxx(x)(1 + ux(x)2)−3/2.

Unless stated otherwise, a minimizer always denotes a global minimizer (which does
not have to be unique). In general, our results only depend on the difference of the
boundary values

ω ≡ β − α,

where α and β are as in (2.3). The straight line always denotes the function

` : [0, 1]→ R, x 7→ α + ωx (2.7)

whose graph joins the points (0, α) and (1, β).

Following Dacorogna [10, § 2.3], for any function f : R → R ∪ {+∞}, f . +∞, we
denote by f ∗∗ its convex and lower semi-continuous envelope, namely

f ∗∗(x) = sup
{
f̃ (x)

∣∣∣ f̃ ≤ f , f̃ convex and lower semi-continuous
}
.

(This set is not empty; take for instance the bidual function of f as in [10, Def. 2.41],
see also [10, Thm. 2.43].) Note that f ∗∗ is itself convex and lower semi-continuous
[10, Thm. 2.26 3]. A convex and finite map f : R → R is even locally Lipschitz
continuous [10, Thm. 2.31]. The subdifferential of a convex function f : R → R ∪
{+∞}, f . +∞ is denoted by ∂ f [10, Def. 2.46]. Note that if in addition f : R → R
then ∂ f (x) , ∅ for all x ∈ R [10, Cor. 2.51]; moreover ∂ f (x) is a convex and compact
set [10, Thm. 2.50 (iii)]. If ∂ f (x) is a singleton, i. e. #∂ f (x) = 1, then f is differentiable
at x [10, Thm. 2.50 (vi)].

Observe that convexity of g in (2.5) is equivalent to sequential weak lower semi-
continuity of E0 in H1,p, p ≥ 1, cf. Buttazzo et al. [8, Thm. 3.3, Thm. 3.5] for more
details.

The following sets (see Fierro, Goglione, and Paolini [15]) are crucial for the under-
standing of the evolution in the non-stationary case. For a given anisotropy g as in (2.5)
sufficiently smooth we define the globally and locally unstable set

GUS :=
{
y ∈ R

∣∣∣ g(y) > g∗∗(y)
}

⊃ LUS :=
{
y ∈ R

∣∣∣ g′′(y) < 0
}
.

The (closed) set where g and its convex envelope coincide is the globally stable set

GS := R \ GUS = {y ∈ R | g∗∗(y) = g(y) } .

Note that g−1(minR g) ⊂ GS.

We say that g is convex at ω if ω ∈ GS and refer to this situation as the convex case,
not to be confused with the case of a convex anisotropy where g∗∗ ≡ g on R.

Finally, C∞0 (0, 1) denotes the subspace of compactly supported functions in C∞(0, 1).

Stationary case

3 Minimizers of the anisotropic functional

In this section we would like to outline some ideas about existence and (possibly)
uniqueness of minimizers for E0 in Cα, β (see (2.4)). Most proofs are intentionally
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omitted, however we provide a number of examples to clarify and make plausible our
statements. Let g be as in (2.5) and ω ≡ α − β. From now on a generalized tangent h
to g∗∗ at ω will denote a line h such that h(ω) = g∗∗(ω) and h ≤ g∗∗(≤ g).

Since we would like to minimize E0 and this functional only depends on the derivative
of u, we need to identify the set of “optimal” slopes. To do that we proceed as follows.
For arbitrary ω ∈ R and λ ∈ ∂g∗∗(ω) let the line hλ : R → R be given by x 7→
g∗∗(ω) + λ(x − ω). In other words, hλ is a generalized tangent of g∗∗ at ω with slope λ.
(Obviously λ = g∗∗′(ω) if g∗∗ is differentiable at ω.) Since

∫ 1
0 hλ(ux) = g∗∗(ω) for

u ∈ Cα, β, the functionals E0 and

Eλ
0 : u 7→

∫ 1

0
(g − hλ)(ux), u ∈ Cα, β,

have the same minimizers. The main idea is now to show that for λ ∈ ∂g∗∗(ω) the set

Zλ := (g − hλ)−1(0)

is not empty. This allows for infCα, β
Eλ

0 = 0. We distinguish between the following
possible situations.

Single-slope (convex). Here ω ∈ GS and for each λ ∈ ∂g∗∗(ω) all further points in Zλ
(if they exist) lie either above or below ω. For instance this is the case for
ω ∈ GS \ {2} = R \ (1, 3) in Figure 1 and ω ∈ GS = {0} in Figure 2. In this
situation the straight line (2.7) is the unique minimizer.

Multiple-slope (convex). Here ω ∈ GS and there is a λ ∈ ∂g∗∗(ω) such that there are
points in Zλ both above and below ω. (This implies ∂g∗∗(ω) = {g∗∗′(ω)}.) In this
case there are infinitely many minimizers in Cα, β, the straight line (2.7) being
one of them. For instance consider the situation of Figure 1 where ω = 2 and
take a piecewise linear curve with slope 1 on [0, 1

2 ) and 3 on ( 1
2 , 1]. In a similar

way one can construct infinitely many other minimizers.

Non-degenerate (non-convex). Here ω ∈ GUS∩ conv GS. Note that there are points
in Zg∗∗′(ω) both above and below ω. For instance take ω ∈ GUS = (1, 2) ∪ (2, 3)
in Figure 1. In this case there are infinitely many piecewise-linear minimizers
constructed in a similar way to the (convex) multiple-slope case. The straight
line is not a minimizer, and more generally there is no minimizer belonging
to C1.

Degenerate (non-convex). Hereω ∈ GUS \ conv GS. Note that all the points in Zg∗∗′(ω)
lie either above or below ω. In this case there are no minimizers in Cα, β. For
example let ω ∈ GUS = R\{0} in Figure 2. Here a minimizing sequence is given
for instance by

uk(t) :=

min (α + kt, β) if β > α,
max (α − kt, β) if β < α.

(3.1)

The proof of the existence of a minimizer in the convex case is straightforward.

Proposition 3.1 (Existence of minimizers in the convex case).
If ω ∈ GS then the straight line ` as in (2.7) is a minimizer of E0 in Cα, β.
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g

h √
13−
√

5
4

Fγ

-2 -1 1 2 3 4 5

-1

1

2

3

0

Figure 1: The function g was created by inserting two “bumps” into y 7→
√

1 + 1
4y

2.
The convex envelope g∗∗ of g coincides with g on GS = R \ ((1, 2) ∪ (2, 3)) and with
h √13−

√
5

4

on [1, 3].

Proof. Let λ ∈ ∂g∗∗(ω). By assumption g∗∗ satisfies g∗∗(y) ≥ g∗∗(ω) + λ(y − ω) for all
y ∈ R, see Dacorogna [10, Cor. 2.51]. Thus, for any u ∈ Cα, β,

E0(u) =

∫ 1

0
g(ux) ≥

∫ 1

0
g∗∗(ux) ≥ g∗∗(ω) + λ

∫ 1

0
(ux − ω) = g(ω) = E0(`). �

We are mainly interested in the non-convex case, in particular in the non-degenerate
case (since there are no minimizers in the degenerate one). Here it can be shown that
g∗∗ is linear on some open interval containing ω. As a consequence g∗∗′(ω) exists and
Zλ with λ = g∗∗′(ω) contains at least one other point above and another below ω. We
introduce the notation

z−ω, z
+
ω ∈ Zλ, z−ω < ω < z+

ω, and
(
z−ω, z

+
ω

)
∩ Zλ = ∅ (3.2)

for the smallest point above ω and the largest one below. Although in many situations
minimizers can also be constructed using other “slopes” of Zλ these two points will
play a fundamental role in the next section.

4 Regularization as a choice criterion

The aim of this section is to derive a procedure to single out some of the many min-
imizers existing in the non-degenerate (non-convex) case. (Thus we have in mind a
situation like ω ∈ (1, 2) in Figure 1.) It turns out that the minimizers with the smallest
number of discontinuities in the derivative will be selected.

Let ε ≥ 0. Obviously,

Eε : u 7→
∫ 1

0

(
g(ux(x)) + ε2 uxx(x)2

(1 + ux(x)2)5/2

)
dx (4.1)

contains only first and second derivatives of u. Thus any function u ∈ Cα, β ∩ H2,2(0, 1)
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g

g∗∗ = h± 1
2

Fγ

∂Fγ∗∗

-4 -3 -2 -1 1 2 3 4

-1

1

2

3

4

0

Figure 2: The function % (see (2.6)) is given by ϕ 7→
(

1
2 + sin(2ϕ) + 1

π
ϕ
)−1

on [0, π2 ]
and extended by mirroring. We have GUS = LUS = R \ {0}. One can show g∗∗(y) =

g(0) + g∞ |y| where g∞ = lim|y|→∞
g(y)
|y|

= 1
2 .

is a minimizer of Eε if and only if v := ux is a minimizer of

Iε : v 7→
∫ 1

0

(
g(v(x)) + ε2 vx(x)2

(1 + v(x)2)5/2

)
dx (4.2)

in

Dω :=
{
v ∈ H1,2(0, 1)

∣∣∣∣∣∣
∫ 1

0
v(x) dx = ω

}
=

{
ux

∣∣∣ u ∈ Cα, β ∩ H2,2(0, 1)
}
.

This section is devoted to the proof of the following

Theorem 4.1 (Minimizers of Iε). In the convex case, i. e. ω ∈ GS, the constant map
v̄ ≡ ω is the unique minimizer of Iε in Dω for all ε ≥ 0.

In the non-degenerate (non-convex) case, i. e. ω ∈ GUS∩ conv GS, there exists a
minimizer of Iε in Dω for any ε > 0. Moreover, the following statements hold.

(i) Each minimizer vε takes values in [z−ω, z
+
ω] only, where z±ω is as in (3.2).

(ii) For g ∈ Ck(R), k = 1, 2, . . . , any minimizer belongs to Ck+1([0, 1]) and satisfies
the non-linear second order ordinary differential equation

vxx =
(1 + v2)5/2

2ε2

(
g′(v) + λ

)
+

5v2
xv

2(1 + v2)
(4.7)

where

λ := −δIε(v, 1) =

∫ 1

0

(
−g′(v) +

5ε2v2
xv

(1 + v2)7/2

)
dx (4.4)

together with the natural boundary conditions vx(0) = vx(1) = 0.

(iii) If v is a minimizer then v(1 − ·) is also a minimizer. For g ∈ C2(R) and ε � 1
each minimizer is strictly monotone.
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(iv) Any sequence of monotone increasing Iε-minimizers converges in Lp, p ∈
[1,∞), to

¯̄v := z−ωχ(−∞,x∗) + z+
ωχ(x∗,∞) where z−ωx∗ + z+

ω(1 − x∗) ≡ ω. (4.11)

Here χ· denotes the characteristic function.

As a consequence we infer the following important

Corollary 4.2 (Uniform C1,1-bound in ε). Minimizers vε ∈ Dω for Iε correspond to
Eε-minimizers (

uε : x 7→ α +

∫ x

0
vε(ξ) dξ

)
∈ Cα, β ∩ H2,2(0, 1) (4.3)

satisfying the uniform bound ‖uε‖H1,∞ ≤ C (independent of ε).

We first consider the convex case ω ∈ GS. Obviously, v̄ is a minimizer, for v̄ ∈ Dω and
Iε(v̄) = I0(v̄) = infDω

I0 ≤ infDω
Iε, where we have used Proposition 3.1 for the second

equality. Uniqueness follows by observing that

Iε(v) − Iε(v̄) = Iε(v) − I0(v)︸        ︷︷        ︸
≥0

+ I0(v) − infDω
I0︸             ︷︷             ︸

≥0

≥ 0 for any v ∈ Dω,

so that any minimizer v ∈ Dω has to satisfy 0 = Iε(v)− I0(v) = ε2
∫ 1

0
v2

x
(1+v2)5/2 . This gives

vx ≡ 0, thus v ≡ v̄.

The proof for the non-degenerate (non-convex) case

ω ∈ GUS∩ conv GS(ND)

is split up into several steps which are carried out in the following subsections. As
pointed out in the last section for E0 and Eλ

0 , the functionals Iε and

Iλε : v 7→
∫ 1

0

(
(g − hλ)(v) + ε2 v2

x

(1 + v2)5/2

)
, v ∈ Dω, λ ∈ ∂g∗∗(ω),

have the same minimizers within Dω. Note that in the non-convex case we always have
λ = g∗∗′(ω). For the sake of simplicity, it will sometimes be convenient to consider g
to be renormalized to g − hg∗∗′(ω) so that

g(z±ω) = 0, g|(z−ω,z+
ω) > 0.(R)

4.1 Existence

First of all we observe that boundedness of Iε(v) does not imply an H1,2-bound for v.

Example 4.3 (Boundedness of Iε does not imply an H1,2-bound). Letω ≥ 2 and con-
sider vδ ∈ C∞([0, 1]) defined by x 7→ (δ + x)−1/2 + cδ with δ ∈ (0, 1] and cδ cho-
sen so that

∫ 1
0 vδ = ω. Precisely we infer that cδ = ω − 2

√
1+δ+

√
δ
≥ 0. We obtain
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vδ,x(x) = − 1
2 (δ + x)−3/2 so that

Iε(vδ) ≤ C (1 + ‖vδ‖L1 )+ 1
4ε

2
∫ 1

0

(δ + x)−1/2(
(δ + x) +

(
1 + cδ

√
δ + x

)2
)5/2 dx ≤ C (1 + ω)+ 1

4ε
2ω,

where C does not depend on δ. On the other hand,∥∥∥vδ,x∥∥∥2
L2 = 1

4

∫ 1

0
(δ + x)−3 dx ≥ 1

8

(
δ−2 − 1

) δ↘0
−−−→ ∞. ^

Because of the lack of an estimate for |vx|we cannot immediately apply direct methods.
Instead, we have to employ a refined coercivity argument.

Proposition 4.4 (Minimizers remain in [z−ω, z
+
ω]).

Consider (ND). Assume v ∈ Dω with image v 1 [z−ω, z
+
ω].

Then there exists some ṽ ∈ Dω with image ṽ ⊂ [z−ω, z
+
ω] and Iε(ṽ) < Iε(v).

Proof. Let image v 1 [z−ω, z
+
ω] and recall ω ∈ (z−ω, z

+
ω). Without loss of generality, we

may assume (R). We first consider [z−ω, z
+
ω] ⊂ image v. By continuity we may choose

0 ≤ x0 < x1 ≤ 1 with {v(x0), v(x1)} =
{
z−ω, z

+
ω

}
and image v|[x0,x1] = [z−ω, z

+
ω]. Define

v̂ : R→ R via

v̂ : x 7−→


v(x0) if x ≤ x0,

v(x) if x ∈ [x0, x1],
v(x1) if x ≥ x1.

Clearly, Iε(v̂|[0,1]) < Iε(v) while the volume constraint may be violated. But since we
have Iε(v̂(· − x̄)|[0,1]) < Iε(v) for all x̄ ∈ R, by continuity there is some x̂ ∈ [−x1, 1 − x0]
such that ṽ := v̂(· − x̂)|[0,1] ∈ Dω and Iε(ṽ) < Iε(v), see Figure 3.

Now we consider [z−ω, z
+
ω] 1 image v. We first assume image v ⊂ (−∞, z+

ω); the situation
image v ⊂ (z−ω,∞) is symmetric. Since by assumption image v 1 [z−ω, z

+
ω] we may

choose 0 ≤ ξ0 < ξ1 ≤ 1 satisfying v|(ξ0,ξ1) < z−ω and[
v(ξ0) = v(ξ1) = z−ω or

(
there is j ∈ {0, 1} such that ξ j = j and v(ξ1− j) = z−ω

)]
.

Note that, since v ∈ Dω, some values of v have to be larger than ω (if v only touches
ω from below then it has to be equal to ω on the whole interval [0, 1]). Replacing
v(x) by z−ω on (ξ0, ξ1) leads to a strictly smaller value of Iε while the volume constraint
is violated; indeed the volume increased. Now we just enlarge the region where the
function is constant equal to z−ω until the volume condition is met. More formally, we
may choose η0 ∈ [0, ξ0], η1 ∈ [0, 1 − ξ1] by continuity such that

ṽ : x 7−→


v(x + η0) if x ∈ [0, ξ0 − η0],
z−ω if x ∈ [ξ0 − η0, ξ1 + η1],
v(x − η1) if x ∈ [ξ1 + η1, 1]

belongs to Dω. By construction, Iε(ṽ) < Iε(v). We have illustrated the procedure on
a single interval. To deal at once with all intervals as above consider the function
ṽ := max(v, z−ω) ∈ H1,2, then “enlarge” one of the intervals where ṽ ≡ z−ω until the
volume constraint is satisfied. �
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0 x0 x1 1

z−ω

ω

z+ω

v

v̂
ṽ

Figure 3: Construction of ṽ in the proof of Proposition 4.4

Lemma 4.5 (Existence of minimizers).
Consider (ND). There exists a minimizer of Iε in Dω for any ε > 0.

Proof. Let (vk)k∈N ⊂ Dω be a minimizing sequence for Iε. By Proposition 4.4 we may
assume image vk ⊂ [z−ω, z

+
ω] for all k ∈ N. We obtain

ε2
∥∥∥vk,x

∥∥∥2
L2 ≤ ε

2
(
1 + max

∣∣∣z±ω∣∣∣2)5/2 ∫ 1

0

v2
k,x

(1 + v2
k)5/2

≤

(
1 + max

∣∣∣z±ω∣∣∣2)5/2
Iε(vk) ≤ C < ∞.

Passing to a subsequence (always without relabeling), there is some v0 ∈ H1,2 with
vk ⇀ v0 weakly in H1,2 and vk → v0 strongly in L2. By Dacorogna [10, Cor. 3.24], the
functional Iε is sequentially weakly lower semi-continuous. Thus

Iε(v0) ≤ lim inf
k→∞

Iε(vk) = inf
Dω

Iε.

It remains to verify that v0 ∈ Dω. But this is straightforward since
∣∣∣∣∫ 1

0 v0 − ω
∣∣∣∣ ≤

‖vk − v0‖L2
k→∞
−−−−→ 0. �

4.2 Regularity of local minimizers

Our next task is to derive the Euler-Lagrange equation. We infer regularity not only for
minimizers but for all local minimizers v of Iε in Dω (i. e. v ∈ Dω and there is some
η > 0 with Iε(ṽ) ≥ Iε(v) for all ṽ ∈ Dω satisfying ‖ṽ − v‖H1,2 < η). The results presented
in this subsection also apply for the convex cases.

Lemma 4.6 (First variation). For each v, w ∈ H1,2(0, 1) and g ∈ C1 the first varia-
tion δIε(v, w) := d

dτ

∣∣∣
τ=0 Iε(v + τw) exists and amounts to

δIε(v, w) =

∫ 1

0

(
g′(v)w +

2ε2vxwx

(1 + v2)5/2 −
5ε2v2

xvw

(1 + v2)7/2

)
.

12



Proof. We obtain Iε(v + δw) − Iε(v) = δ
∫ 1

0

∫ 1
0 ζ(δ, ξ, x) dξ dx, where

ζ(δ, ξ, ·) := g′(v + ξδw)w +
2ε2(vx + ξδwx)wx

(1 + (v + ξδw)2)5/2 −
5ε2(vx + ξδwx)2(v + ξδw)w

(1 + (v + ξδw)2)7/2 .

Using the growth conditions on g and the continuity of g′, the integral
∫ 1

0 ζ(δ, ξ, ·) dξ is
majorized by some L1 function uniformly in δ on some neighbourhood of 0. Applying
Lebesgue’s theorem on dominated convergence, we may pass to the limit. �

Note that we do not obtain the above result for g ∈ C0,1 as g′ ◦ v might be undefined on
a positive measure set.

Defining

λ := −δIε(v, 1) =

∫ 1

0

(
−g′(v) +

5ε2v2
xv

(1 + v2)7/2

)
dx (4.4)

and noting that for each δ ∈ R, ϕ ∈ H1,2, and w := ϕ −
∫ 1

0 ϕ ∈ H1,2(0, 1) we obtain
v + δw ∈ Dω, we infer

Lemma 4.7 (Weak Euler-Lagrange equation). Let v be a local minimizer of Iε in
Dω and g ∈ C1. Then there is some λ ∈ R with

δIε(v, ϕ) + λ

∫ 1

0
ϕ = 0 for all ϕ ∈ H1,2(0, 1).

For ϕ ∈ H1,2
0 (0, 1), the weak Euler-Lagrange equation reads

0 =

∫ 1

0

(
g′(v)ϕ +

2ε2vxϕx

(1 + v2)5/2 −
5ε2v2

xvϕ

(1 + v2)7/2 + λϕ

)
(4.5)

=

∫ 1

0
ϕx

(
2ε2vx

(1 + v2)5/2 − λx +

∫ x

0

5ε2v2
xv

(1 + v2)7/2 −

∫ x

0
g′(v)

)
.

Since the bracket belongs to L1 we may apply DuBois-Reymond’s Lemma, cf. But-
tazzo et al. [8, Lem. 1.8], which gives

vx =
(1 + v2)5/2

2ε2

(
λx + c +

∫ x

0
g′(v) −

∫ x

0

5ε2v2
xv

(1 + v2)7/2

)
(4.6)

for some constant c ∈ R. Assuming g ∈ C1 we obtain g′(v) ∈ C0 so that
∫
g′(v) ∈

C1. Moreover, since v2
x ∈ L1 the right-hand side of (4.6) belongs to H1,1 ↪→ L4 [8,

Thm. 2.8]. This gives vx ∈ L4 and therefore 5ε2v2
xv(1 + v2)−7/2 ∈ L2. Thus, the right-

hand side of (4.6) belongs to H1,2 which implies v ∈ H2,2. From H2,2(0, 1) ⊂ C1([0, 1])
and (4.6) it follows that v ∈ C2 which cannot be improved without imposing stronger
conditions on g.

Integrating by parts in (4.5) and applying the Fundamental Lemma we deduce

vxx =
(1 + v2)5/2

2ε2

(
g′(v) + λ

)
+

5v2
xv

2(1 + v2)
. (4.7)

By a bootstrap argument we infer higher regularity for k = 1, 2, . . . .

Thus we have proven
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Lemma 4.8 (Regularity of local minimizers). For ε > 0 and g ∈ Ck(R), k =

1, 2, . . . , a local minimizer of Iε in Dω belongs to Ck+1([0, 1]) and satisfies (4.7).

We may obtain similar results if g belongs to suitable Hölder or Sobolev spaces.

Integrating by parts in (4.5) for arbitrary ϕ ∈ H1,2(0, 1) yields

Corollary 4.9 (Natural boundary conditions). For ε > 0 and g ∈ C1(R), a local
minimizer of Iε in Dω satisfies vx(0) = vx(1) = 0.

Finally, multiplying (4.7) by vx and integrating, we obtain

ε2 v2
x

(1 + v2)5/2 = g(v) + λv + σ (4.8)

for some integration constant σ ∈ R. Note that (4.7) and (4.8) are autonomous non-
linear second- / first-order ordinary differential equations.

4.3 Monotonicity of local minimizers

As in the preceding subsection we consider not only global minimizers but also local
ones while we again restrict to the non-degenerate (non-convex) case. Note that a
priori we cannot exclude that a local minimizer is constant, since these satisfy the
Euler-Lagrange Equation (4.7). (See also Corollary 4.13 below.)

A main property in the study of autonomous systems is that orbits cannot intersect each
other. Employing an argument as in Carr, Gurtin, and Slemrod [9] we derive

Proposition 4.10 (Local minimizers are monotone). Consider (ND).
If g ∈ C2, any local minimizer for Iε in Dω is either constant or strictly monotone.

The reason for the restriction to g ∈ C2 is again that we have to ensure that g′′ ◦ v is
well-defined.

Proof. We may assume (R) (see page 10) without loss of generality. Let v be a non-
constant local minimizer of Iε in Dω. Thus the Lagrange multiplier λ can be consid-
ered a fixed constant (which can be computed according to (4.4)). We may rewrite
the Euler-Lagrange Equation (4.7) as an autonomous system of two first-order ordi-
nary differential equations

(
ξ
η

)
x

= F(ξ, η) =
(

F1(ξ,η)
F2(ξ,η)

)
, where F1(ξ, η) = η, F2(ξ, η) =

1
2ε2 (1 + ξ2)5/2 (g′(ξ) + λ) + 5

2ξ(1 + ξ2)−1η2. Of course, (ξ, η) = (v, vx) is a solution.

We divide our proof into two steps.

(i) The solution (v, vx) lies on a closed orbit. This orbit is symmetric with respect to
the ξ-axis and intersects it precisely twice.

(ii) The (image of the) solution (v, vx) does not entirely cover the orbit.

Recalling the natural boundary conditions vx(0) = vx(1) = 0 due to Corollary 4.9, the
solution (v, vx) starts and ends at the ξ-axis. As vx . 0, we obtain by means of (i)
and (ii) either vx > 0 or vx < 0 on (0, 1).
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(i) Obviously F(ξ,−η) =
(
−F1(ξ,η)
F2(ξ,η)

)
, so the phasefield is “symmetric” with respect to the

ξ-axis which gives symmetry of the orbits. We already know v ∈ C3 from Lemma 4.8,
so (as v is not constant) there is a θ ∈ (0, 1] such that vx is either positive or negative
on (0, θ) and vx(θ) = 0. Now by symmetry,

(
v
−vx

)
(θ − ·) is also a solution for our system

belonging to the same orbit. By the Picard-Lindelöf Theorem this defines the unique
extension to our solution. Thus we have shown that the orbit corresponding to (v, vx) is
closed.

(ii) Assuming the contrary, (v, vx) covers the orbit. So there is some x0 ∈ (0, 1] such
that v(0) = v(x0). From (i) we infer vx(0) = vx(x0) = 0. Our aim is to show that there is
some φ ∈ H1,2 with

∫ 1
0 φ = 0 (so that v + τφ ∈ Dω for all τ ∈ R) and δ2Iε(v; φ, φ) < 0,

where δ2Iε denotes the second variation of Iε.

Argueing as in the proof of Lemma 4.6 we obtain the existence of the second variation

δ2Iε(v; φ, φ) := d2

dτ2

∣∣∣∣
τ=0

Iε(v + τφ)

= ε2
∫ 1

0

(
g′′(v)
ε2 φ2 + 2

φ2
x

(1 + v2)5/2 − 20
vvxφφx

(1 + v2)7/2 − 5
v2

xφ
2

(1 + v2)7/2 + 35
v2

xv
2φ2

(1 + v2)9/2

)
.

Recalling Lemma 4.8 we define φ0 ∈ H1,2(0, 1) by φ0 := vx on [0, x0] and φ0 := 0 on
[x0, 1]. Furthermore we choose φ1 ∈ H1,2(0, 1) satisfying φ1(0) = 1, φ1 ≡ 0 on [x0, 1],
and

∫ 1
0 φ1 = 0. So φ := φ0 + θφ1 fulfills

∫ 1
0 φ = 0 for all θ ∈ R. It remains to show that

we can achieve δ2Iε(v; φ, φ) < 0 by choosing θ properly. Now

δ2Iε(v; φ, φ)
ε2

=

∫ x0

0

(
g′′(v)
ε2 v2

x + 2
v2

xx

(1 + v2)5/2 − 20
vxxv

2
xv

(1 + v2)7/2 − 5
v4

x

(1 + v2)7/2 + 35
v4

xv
2

(1 + v2)9/2

)
+ 2θ

∫ x0

0

(
g′′(v)
ε2 vxφ1 + 2

vxxφ1,x

(1 + v2)5/2 − 10
v2

xvφ1,x + vxxvxvφ1

(1 + v2)7/2 − 5
v3

xφ1

(1 + v2)7/2

+ 35
v3

xv
2φ1

(1 + v2)9/2

)
+ θ2

∫ x0

0

g′′(v)ε2 φ2
1 + 2

φ2
1,x

(1 + v2)5/2 − 20
vvxφ1φ1,x

(1 + v2)7/2 − 5
v2

xφ
2
1

(1 + v2)7/2 + 35
v2

xv
2φ2

1

(1 + v2)9/2


=: I + θ II + θ2III. (4.9)

The proof is completed by showing that this expression is equal to −4θ
vxx(0)

(1 + v(0)2)5/2 +

O(θ2) and that vxx(0) , 0. In this case we can find some θ ∈ Rwith the desired property.

Multiplying (4.7) by 2(1 + v2)−5/2 and differentiating with respect to x we obtain

2
vxxx

(1 + v2)5/2 =
g′′(v)
ε2 vx + 20

vxxvxv

(1 + v2)7/2 + 5
v3

x

(1 + v2)7/2 − 35
v3

xv
2

(1 + v2)9/2 . (4.10)

Multiplying this identity by vx and substituting it in the first term in (4.9) yields

I = 2
∫ x0

0

(
v2

xx

(1 + v2)5/2 +
vxxxvx

(1 + v2)5/2 − 20
vxxv

2
xv

(1 + v2)7/2 − 5
v4

x

(1 + v2)7/2 + 35
v4

xv
2

(1 + v2)9/2

)
= 2

[
vxxvx

(1 + v2)5/2 − 5
v3

xv

(1 + v2)7/2

]x0

0
= 0
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by the natural boundary conditions. We proceed to the second term in (4.9) which by
inserting (4.10) multiplied by φ1 becomes

II = 4
∫ x0

0

(
vxxxφ1

(1 + v2)5/2 +
vxxφ1,x

(1 + v2)5/2 − 10
vxxvxvφ1

(1 + v2)7/2 − 5
v2

xvφ1,x + vxxvxvφ1

(1 + v2)7/2

− 5
v3

xφ1

(1 + v2)7/2 + 35
v3

xv
2φ1

(1 + v2)9/2

)
= 4

[
vxxφ1

(1 + v2)5/2 − 5
v2

xvφ1

(1 + v2)7/2

]x0

0
= −4

vxx(0)
(1 + v(0)2)5/2 .

The third term III is easily shown to be O(1). Finally we only have to show vxx(0) ,
0. Indeed if vxx(0) = 0, by vx(0) = 0, the initial velocity of the phase field at the
point (ξ, η) = (v(0), vx(0)) is (vx(0), vxx(0)) = (0, 0), i. e. we are looking at a constant
solution. �

From now on we again restrict to (global) minimizers.

Remark 4.11 (Uniqueness of minimizers). Under certain conditions on the regular-
ity of g we expect the uniqueness result by Carr, Gurtin, and Slemrod [9] to carry over
to our situation. So, for any 0 < ε � 1, there should be precisely two minimizers
vε,↗, vε,↘ in Dω, where vε,↗ is monotone increasing and vε,↘ = vε,↗(1 − ·) is monotone
decreasing. ^

4.4 Convergence

In this subsections we prove convergence to the limit function

¯̄v := z−ωχ(−∞,x∗) + z+
ωχ(x∗,∞) where z−ωx∗ + z+

ω(1 − x∗) ≡ ω. (4.11)

As before, χ· denotes the characteristic function.

Similarly to the convex case where Iλε (v̄) = 0 for any ε ≥ 0 and λ ∈ ∂g∗∗(ω) we establish

Lemma 4.12 (Lower bound for Iε). Consider (ND). For λ = g∗∗′(ω) we obtain

inf
Dω

Iλε = O(ε). (4.12)

Proof. Assuming (R) for simplicity, the result follows by showing Iε(wε) = O(ε) for a
suitable sequence (wε)ε>0 ⊂ Dω. Let x∗ ∈ (0, 1) be as in (4.11) and define a piecewise
linear wδ ∈ Dω, 0 < δ � 1, via

wδ : x 7−→


z−ω if x ∈ [0, x∗ − δ],
z+
ω+z−ω

2 +
z+
ω−z−ω
2δ (x − x∗) if x ∈ [x∗ − δ, x∗ + δ],

z+
ω if x ∈ [x∗ + δ, 1].

Now

0 ≤ inf
Dω

Iε ≤
∫ x∗+δ

x∗−δ
g(wδ) + ε2

∫ x∗+δ

x∗−δ

w2
δ,x

(1 + w2
δ)

5/2
≤ 2δ max

[z−ω,z+
ω]
g + ε2 (z+

ω − z−ω)2

2δ
.

Choosing δ := ε yields the desired result. �
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As a consequence of the preceding Lemma and Proposition 4.10 we deduce

Corollary 4.13 (No straight line minimizer). Consider (ND). The constant v̄ ≡ ω
is not a minimizer of Iε in Dω for 0 < ε � 1. Moreover, if g ∈ C2, each minimizer of
Iε in Dω is strictly monotone provided 0 < ε � 1.

Proposition 4.14 (Convergence of minimizers). Consider (ND). Let (vε)ε>0 ⊂ Dω

be a sequence of monotone increasing minimizers for Iε. Then vε → ¯̄v in Lp, p ∈
[1,∞), as ε↘ 0, where ¯̄v is as in (4.11).

Proof. We assume (R). Proposition 4.4 yields image vε ⊂ [z−ω, z
+
ω]. Let µ := min

∣∣∣ω − z±ω
∣∣∣.

For ε > 0 and η ∈ (0, µ) to be chosen later on we define

Bε,η :=
{
x ∈ [0, 1]

∣∣∣ dist(vε(x), z−ω) ≥ η and dist(vε(x), z+
ω) ≥ η

}
.

We obtain ∣∣∣Bε,η∣∣∣ min
[z−ω+η,z+

ω−η]
g ≤

∫
Bε,η

g(vε) ≤ Iε(vε),

which gives by Lemma 4.12∣∣∣Bε,η∣∣∣ ε↘0
−−−→ 0 pointwise for any η ∈ (0, µ). (4.13)

We will show below the existence of ε1 = ε1(η) > 0 with{
x ∈ [0, 1]

∣∣∣ dist
(
vε(x), z−ω

)
< η

}
, ∅ and

{
x ∈ [0, 1]

∣∣∣ dist
(
vε(x), z+

ω

)
< η

}
, ∅
(4.14)

for any ε ∈ (0, ε1). By (4.14) we can define

b−ε,η := sup
{
x ∈ [0, 1]

∣∣∣ dist
(
vε(x), z−ω

)
< η

}
= sup

{
x ∈ [0, 1]

∣∣∣ vε(x) < z−ω + η
}
,

b+
ε,η := inf

{
x ∈ [0, 1]

∣∣∣ dist
(
vε(x), z+

ω

)
< η

}
= inf

{
x ∈ [0, 1]

∣∣∣ vε(x) > z+
ω − η

}
in [0, 1] for any ε ∈ (0, ε1). Note that z−ω + η < ω < z+

ω − η. By monotonicity we infer
Bε,η =

[
b−ε,η, b

+
ε,η

]
. Making ε1 smaller if necessary, we will show

max
∣∣∣b±ε,η − x∗

∣∣∣ ≤ η

z+
ω − z−ω

(4.15)

for any ε ∈ (0, ε1). Let δ > 0 and choose

η = η(δ) := min
((

1
2δ

)1/p
, 1

4δ
(
z+
ω − z−ω

)1−p
, 1

2µ
)
.

It follows by (4.15)

∥∥∥vε − ¯̄v
∥∥∥p

Lp ≤

∫ min(b−ε,η,x∗)

0

∣∣∣vε − ¯̄v
∣∣∣p +

∫ max(b+
ε,η,x∗)

min(b−ε,η,x∗)

∣∣∣vε − ¯̄v
∣∣∣p +

∫ 1

max(b+
ε,η,x∗)

∣∣∣vε − ¯̄v
∣∣∣p

≤ ηp +
(
z+
ω − z−ω

)p
(
max

(
b+
ε,η, x∗

)
−min

(
b−ε,η, x∗

))
≤ ηp + 2η

(
z+
ω − z−ω

)p−1
≤ δ

for any ε ∈ (0, ε1(η(δ))) as desired.
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We still have to verify (4.14) and (4.15). For the former we assume{
x ∈ [0, 1]

∣∣∣ dist(vε j (x), z−ω) < η
}

= ∅

for a sequence ε j ↘ 0. This means dist(vε j (x), z−ω) ≥ η for all x ∈ [0, 1] which implies
dist(vε j (·), z

+
ω) < η on [0, 1] \ Bε j,η. Since image vε j ∈ [z−ω, z

+
ω] and (4.13) we obtain

∣∣∣ω − z+
ω

∣∣∣ =

∣∣∣∣∣∣
∫ 1

0
vε j − z+

ω

∣∣∣∣∣∣ ≤ η (
1 −

∣∣∣Bε j,η

∣∣∣) +
(
z+
ω − z−ω

) ∣∣∣Bε j,η

∣∣∣ j→∞
−−−−→ η

which is a contradiction since we assumed η < µ ≤
∣∣∣ω − z+

ω

∣∣∣. The argument for b+
ε,η is

analogous.

To derive (4.15), we again argue by contradiction. Assume that there is a sequence
ε j ↘ 0 with

∣∣∣∣b−ε j,η
− x∗

∣∣∣∣ > η

z+
ω − z−ω

. By compactness we may assume b−ε j,η
→ x̂∗ as

j→ ∞ for some limit point x∗ ∈ [0, 1]. Using (4.13) we derive

max
(
b+
ε j,η
, x̂∗

)
−min

(
b−ε j,η

, x̂∗
)
≤

∣∣∣∣b+
ε j,η
− x̂∗

∣∣∣∣+ ∣∣∣∣b−ε j,η
− x̂∗

∣∣∣∣ ≤ ∣∣∣Bε j,η

∣∣∣+2
∣∣∣∣b−ε j,η

− x̂∗
∣∣∣∣ j→∞
−−−−→ 0.

For ω̂ := z−ω x̂∗ + z+
ω(1 − x̂∗) we obtain

|ω − ω̂| =

∣∣∣∣∣∣
∫ 1

0
vε j − ω̂

∣∣∣∣∣∣ ≤
∫ min

(
b−ε j ,η

,x̂∗
)

0

(
vε j − z−ω

)
+

∫ 1

max
(
b+
ε j ,η,x̂∗

) (z+
ω − vε j

)
+

∫ max
(
b+
ε j ,η

,x̂∗
)

min
(
b−ε j ,η,x̂∗

) (∣∣∣vε j

∣∣∣ +
∣∣∣z−ω∣∣∣ +

∣∣∣z+
ω

∣∣∣)
≤ η + 2

(∣∣∣z−ω∣∣∣ +
∣∣∣z+
ω

∣∣∣) (max
(
b+
ε j,η
, x̂∗

)
−min

(
b−ε j,η

, x̂∗
))
.

Letting j→ ∞ we deduce |ω − ω̂| ≤ η. From x∗ =
z+
ω − ω

z+
ω − z−ω

and x̂∗ =
z+
ω − ω̂

z+
ω − z−ω

we infer

|x̂∗ − x∗| ≤
|ω̂ − ω|

z+
ω − z−ω

≤
η

z+
ω − z−ω

which implies
∣∣∣∣b−ε j,η

− x∗
∣∣∣∣ ≤ ∣∣∣∣b−ε j,η

− x̂∗
∣∣∣∣ +

η

z+
ω − z−ω

.

Passing to the limit yields a contradiction to our initial assumption
∣∣∣∣b−ε j,η

− x∗
∣∣∣∣ > η

z+
ω − z−ω

.

The same reasoning applies to b+
ε j,η

. �

We close this section with some comments.

Remark 4.15 (Estimate (4.12) cannot be improved). For any sequence (vε)ε>0 ⊂ Dω

of monotone increasing (continuous) minimizers, the preceding lemma gives vε(0) →
z−ω and vε(1)→ z+

ω as ε↘ 0 so that

lim inf
ε↘0

inf
Dω

Iε
ε
≥ 2

∫ z+
ω

z−ω

√
g(s)

(1 + s2)5/4 ds
(R)
> 0.

The functional on the right-hand side is the candidate for the Gamma-limit, see Braides [6,
Chap. 6]. ^
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Remark 4.16 (Non-existence of minimizers for ε = 0). Assume (R). By Lemma 4.12,
a minimizer v0 of I0 in Dω has to satisfy g(v0) = 0 a. e. so that v0 ∈

{
z±ω

}
a. e. In order

to fulfill the volume constraint, v0 has to be discontinuous and therefore cannot belong
to Dω ⊂ C0. At least, v0 ∈ L∞. ^

Remark 4.17 (Unique minimizer for ε = ∞). For fixed ε > 0 the functionals εµIε,
µ ∈ R, have the same minimizer. Obviously, ε−2Iε tends (pointwise) to the Willmore
functional I1 − I0 as ε↗ ∞. Its unique minimizer in Dω amounts to v̄. ^

Remark 4.18 (Gamma-convergence). In Proposition 4.14 we have established the
convergence of a sequence (vε)ε>0 of Iε-minimizers to the limit function ¯̄v. Although
I0 does not have minimizers in Dω by Remark 4.16, the map ¯̄v is clearly one of many
minimizers of I0 when considered in the class{

v ∈ L1(0, 1)

∣∣∣∣∣∣
∫ 1

0
v(x) dx = ω

}
.

Observe how the regularization process selects those minimizers with the smallest
number of discontinuities.

We could have obtained this piece of information by employing Gamma-convergence
arguments, see Braides [6, Chap. 6]. More precisely, under suitable conditions the
rescaled energies 1

ε
Iε Gamma-converge to a functional Ĩ that is defined on piecewise

constant functions taking values z±ω a. e. and that essentially counts the number of
jumps. ^

Evolution equation

For the remainder of this work we assume that g as in (2.5) is at least C2.

5 Classical formulation of the flow

To derive a classical formulation for the flow we need to compute the first variation for
Eε (cf. (1.2) and (4.1)). Moreover since we consider a fourth-order problem we also
need to impose an additional set of boundary conditions: a natural choice is given by
the natural boundary conditions. To derive them, assume that u ∈ Cα, β is a smooth
critical point for Eε and consider variations of type u + δϕ, where ϕ ∈ C∞([0, 1]) and
ϕ(0) = ϕ(1) = 0. We obtain

0 =
d
dδ

∣∣∣∣
δ=0

Eε(u + δϕ) =

∫ 1

0
g′(ux)ϕx + ε2

(
2

uxxϕxx

(1 + (ux)2)5/2 − 5
(uxx)2uxϕx

(1 + (ux)2)7/2

)
dx

=

∫ 1

0
−(g′(ux))xϕ + 5ε2

(
(uxx)2ux

(1 + (ux)2)7/2

)
x
ϕ − 2ε2

(
uxx

(1 + (ux)2)5/2

)
x
ϕx dx

+ 2ε2
[ uxxϕx

(1 + (ux)2)5/2

]1

0
∀ϕ ∈ C∞([0, 1]), ϕ(0) = ϕ(1) = 0.

If we choose ϕ ∈ C∞0 (0, 1) then we infer that the above integral expression vanishes,
therefore we get that

0 =
[ uxxϕx

(1 + (ux)2)5/2

]1

0
∀ϕ ∈ C∞([0, 1]), ϕ(0) = ϕ(1) = 0.
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This implies that the natural boundary conditions are given by

uxx(0) = uxx(1) = 0. (5.1)

To compute the first variation assume again that u ∈ Cα, β is as smooth as required and
let ϕ ∈ C∞0 (0, 1). Then

d
dδ

∣∣∣∣
δ=0

Eε(u + δϕ) =

∫ 1

0
−(g′(ux))xϕ + 5ε2

(
(uxx)2ux

(1 + (ux)2)7/2

)
x
ϕ + 2ε2

(
uxx

(1 + (ux)2)5/2

)
xx
ϕ dx

=

∫ 1

0

(
−(g′(ux))x + ε2

(
2

uxxxx

(1 + (ux)2)5/2 − 20
uxuxxuxxx

(1 + (ux)2)7/2 +
(uxx)3

(1 + (ux)2)9/2 (30(ux)2 − 5)
))
ϕ dx

(
=

∫ 1

0

(
−g′′(ux)uxx + ε2(2κss + κ3)

)
〈−ν,

(
0
ϕ

)
〉R2

√
1 + u2

x dx
)
,

where d
ds = 1√

1+u2
x

d
dx . Using the above piece of information and the expression of

the velocity in the graph case we infer that a classical formulation for the flow of Eε

amounts to finding u such that

ut√
1 + u2

x

= g′′(ux)uxx −
ε2

(1 + u2
x)1/2

(
2

uxxxx

(1 + u2
x)2 − 20

uxuxxuxxx

(1 + u2
x)3 +

u3
xx

(1 + u2
x)4 (30u2

x − 5)
)

(5.2)

and subject to the boundary conditions

u(0) = α, u(1) = β, uxx(0) = uxx(1) = 0. (5.3)

Remark 5.1. Note that with ν = (ux,−1)/
√

1 + u2
x = (cos θ, sin θ), τ = (sin θ,− cos θ),

κ = uxx

(1+u2
x)3/2 , γ(ν) = f (θ) and using the homogeneity properties of γ one computes

f ′′(θ) + f (θ) = 〈γ′′(ν)τ, τ〉R2 = γp1 p1 (cos θ, sin θ)
1

sin2 θ
= γp1 p1 (ux,−1)(1 + u2

x)3/2,

from which it follows

( f ′′(θ) + f (θ))κ = g′′(ux)uxx.

In particular (1.1ε) can immediately be recovered (up to an obvious multiplication fac-
tor 1/2 for the Willmore term). ^

6 Problems related to existence and convergence

In the following section we would like to shortly illustrate the problems that come up
when we try to study the flow in the limit ε → 0. The main question that motivates us
is whether there is some sort of convergence, i.e. whether we can give a suitable notion
of weak solution as ε goes to zero. A first step in this direction is to consider a weak
formulation of the flow and derive energy estimates. In the following we outline the
main ideas and give formal arguments but we do not go into any detail.
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Roughly speaking, a weak formulation for the evolution equation reads: find uε ∈
W1,2(0,Tε ; H2(0, 1)) such that uε(0, t) = α, uε(1, t) = β for all times t, uε(·, 0) = uε0(·),
‖u0 − uε0‖H2(0,1) → 0 for ε → 0, and∫ 1

0

uεt√
1 + (uεx)2

ϕ dx = −

∫ 1

0
g′(uεx)ϕx + ε2

(
2

uεxxϕxx

(1 + (uεx)2)5/2 − 5
(uεxx)2uεxϕx

(1 + (uεx)2)7/2

)
dx

(6.1)
holds for all ϕ ∈ H2(0, 1) ∩ H1

0(0, 1) and for a.e. t ∈ [0,Tε]. Note that if a solution
exists and it is smooth enough then it satisfies the natural boundary conditions.

Assuming short time existence for any ε and assuming that there exists a time T such
that uε ∈ W1,2(0,T ; H2(0, 1)) for all ε (here we are skipping a fair bit of work! At
the time of writing the authors are not aware of short/long time existence results that
precisely fit our setting), we can test with ϕ = uεt and derive∫ 1

0

(uεt )2√
1 + (uεx)2

dx = −

∫ 1

0
g′(uεx)uεtx + ε2

(
2

uεxxuεtxx

(1 + (uεx)2)5/2 − 5
(uεxx)2uεxuεtx

(1 + (uεx)2)7/2

)
dx = −

d
dt

Eε(uε).

Thus we immediately infer that there exists a constant C independent of t and ε such
that for any ε < 1 and t ∈ (0,T ) we have∫ t

0

∫ 1

0

(uεt )2√
1 + (uεx)2

dxdt + sup
(0,t)

Eε(uε) ≤ Eε(uε0) ≤ C. (6.2)

From the above inequality and from the fact that g(uεx) ≥ c0
√

1 + (uεx)2 ≥ c0|uεx| and
uε(x, t) = α +

∫ x
0 uεx(s, t)ds we infer that

sup
(0,T )
‖uε‖H1,1(0,1) ≤ C. (6.3)

Next from
∫ t

0

∫ 1
0

(uεt )2
√

1+(uεx)2
dxdt ≤ C and

∫ t
0

∫ 1
0 c0

√
1 + (uεx)2 dxdt ≤ CT it follows that

2
√

c0

∫ t

0

∫ 1

0
|uεt | dxdt ≤

∫ t

0

∫ 1

0

(uεt )2√
1 + (uεx)2

+ c0

√
1 + (uεx)2 dxdt ≤ C(1 + T )

and therefore

uεt ∈ L1(0,T ; L1(0, 1)). (6.4)

From (6.3) and (6.4) it follows that

uε ∈ W1,1((0,T ) × (0, 1)). (6.5)

This bound proves that a subsequence of uε converges in L1((0,T )×(0, 1)) to a function
u ∈ L1((0,T ) × (0, 1)). Unfortunately from the energy estimates alone we can not get
any further information about the behaviour of u, in particular in relation to (6.1).
Indeed, it is reasonable to expect that the above estimates plus a convexity condition on
the map g should imply that the regularized ε-problem converges to the well defined
anisotropic mean curvature flow as ε → 0 (cf. [5]). However, this is not the case we
are interested in, since for g uniformly convex and sufficiently smooth there is actually
no need for regularization.
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As shown in [4], where the authors thoroughly investigate a simplified model and put
forward a number of conjectures, the limit problem is a very difficult one. Our hope is
that the presence of a physically more consistent term such as the Willmore functional
will help make its analysis more approachable – despite being more complicated at first
sight.

To get first ideas of what phenomenon we should expect in the limit ε → 0 it is useful
to discretize the problem and perform some numerical simulations. A finite element
discretization is discussed in Section 8 and first experiments are shown in Section 9.

7 The wrinkles phenomenon

Similarly to [4] (see also [15]) we have observed that the flow develops wrinkles very
early in the stage of the evolution and that these wrinkles do not leave the region
ΣL(u0) := {x ∈ [0, 1] : u0x(x) ∈ LUS}, where u0 is the given initial curve and

LUS = {y ∈ R : g′′(y) < 0} ⊆ GUS (7.1)

(as defined in Section 2). In the following we try to give a plausible explanation for the
phenomenon of wrinkles formation. The arguments are essentially given in [4, §4.1]
but we repeat them here for the reader’s convenience. We know that lines ū(x) = px+q,
x ∈ [0, 1], p, q ∈ R, are stationary solutions for the flow for any choice of ε (their
stability or instability depending on the value p and the choice of anisotropy). We
might therefore assume that, for perturbed initial data, say ū + δv̄(·, ε), a solution to the
flow is of type

u(x, t, ε; δ) = ū(x) + δv(x, t, ε) + O(δ2)

for small δ. Plugging the above expression into (5.2), dividing by δ, and choosing
δ = 0, we observe that v has to satisfy the linear PDE

vt = g′′(p)vxx

√
1 + p2 − 2ε2 vxxxx

(1 + p2)2 .

We can solve this equation using the Ansatz v(x, t, ε) = ψ(t, ε)η(x, ε). This gives

ψt

ψ
= c(ε) =

1
η

(g′′(p)ηxx

√
1 + p2 − 2ε2 ηxxxx

(1 + p2)2 ).

Thus ψ(t, ε) = c̃ exp(c(ε)t), and η is the solution of a fourth order linear ODE. The
map η might be of different types depending on the values of c(ε); however since we
are interested in oscillating terms we might as well look directly for solutions of type
v(x, t, ε) = exp(λt) sin(mx), where λ = λ(ε), m = m(ε). A straightforward computation
gives that m and λ must satisfy the following relation

λ = −m2
(

2ε2

(1 + p2)2 m2 + g′′(p)
√

1 + p2

)
.

Thus we see that if g is convex then λ is negative and oscillations can be basically
neglected. On the contrary, if g′′(p) < 0 then we see that λ is positive provided that
m2 < − g

′′(p)
2ε2 (1 + p2)5/2. More precisely λ assumes it maximum value

λmax =
(g′′(p))2

8ε2 (1 + p2)3 (7.2)
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at m2
max = −

g′′(p)
4ε2 (1 + p2)5/2. This value can be very large when ε is small.

Next, thinking of a flow with initial curve u0, we can expect that locally around x0 ∈

[0, 1] the initial map can be approximated by its linear part u0x(x0)(x − x0) + u0(x0).
Assuming that the above analysis applies then we expect the wrinkles phenomenon
to appear only in the region ΣL(u0) = {x ∈ [0, 1] : u0x(x) ∈ LUS} as stated above.
Furthermore the expression for mmax suggests that the wave length of the appearing
wrinkles should be O(ε).

8 Discretization

To discretize the problem we compute the first variation of the functional Eε using the
ideas proposed in [14]. One advantage in doing so is that it is rather easy to show that
in the semi-discrete setting the energy decreases along the flow. We introduce a new
variable w := κ

√
1 + u2

x = uxx

1+u2
x
. For variations of type u + δϕ, where u is as smooth as

required and satisfies the natural boundary conditions, and ϕ ∈ C∞0 (I), I = (0, 1), we
have that ∫

I

wδ√
1 + (ux + δϕx)2

ψ dx = −

∫
I

ux + δϕx√
1 + (ux + δϕx)2

ψx dx

holds for all ψ ∈ C∞0 (I). Derivation with respect to δ yields∫
I

d
dδ

∣∣∣∣
δ=0
wδ

ψ√
1 + u2

x

dx =

∫
I
wψ

uxϕx

(1 + u2
x)3/2 −

ψxϕx

(1 + u2
x)3/2 dx. (8.1)

In particular this equation holds for ψ = w. Using this fact we compute

d
dδ

∣∣∣∣
δ=0

Eε(u + δϕ) =
d
dδ

∣∣∣∣
δ=0

∫
I
g(ux + δϕx) + ε2 w2

δ√
1 + (ux + δϕx)2

dx


=

∫
I
g′(ux)ϕx + 2ε2 d

dδ

∣∣∣∣
δ=0
wδ

w√
1 + u2

x

− ε2w2 uxϕx

(1 + u2
x)3/2 dx

=

∫
I
g′(ux)ϕx + ε2w2 uxϕx

(1 + u2
x)3/2 − 2ε2 wxϕx

(1 + u2
x)3/2 dx.

Thus we can reformulate our original ε-problem as follows: we look for u(·, t) ∈ H1,2(I)
and w(·, t) ∈ H1,2

0 (I) such that ut(·, t) ∈ H1,2(I), u(0, t) = α, u(1, t) = β, u(·, 0) = u0, and∫
I

ut√
1 + u2

x

ϕ dx = −

∫
I
g′(ux)ϕx + ε2w2 uxϕx

(1 + u2
x)3/2 − 2ε2 wxϕx

(1 + u2
x)3/2 dx ∀ϕ ∈ H1,2

0 (I),

(8.2)∫
I

w√
1 + u2

x

ψ dx = −

∫
I

ux√
1 + u2

x

ψx dx ∀ψ ∈ H1,2
0 (I) (8.3)

for almost every time t ∈ [0,Tε]. Note that by choosing ε = 1 and leaving out the
term involving the map g we recover the one-dimensional version of the scheme given
in [11].
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Differentiating (8.3) with respect to time we obtain an equation which we refer to as
(8.3)t. Testing with ψ = w in (8.3)t and ϕ = ut in (8.2) we immediately infer

d
dt

Eε(u) = −

∫
I

u2
t√

1 + u2
x

≤ 0. (8.4)

Now let Ī =
⋃N+1

j=1 I j be a decomposition of the interval Ī = [0, 1] into intervals I j =

[x j−1, x j] for j = 1, . . . ,N + 1. We set x0 = 0 and xN+1 = 1. Let h j = |I j| and
h = max j=1,...,N+1 h j be the maximal diameter of a grid element. We assume that for
some constant c̃ > 0 we have that h j ≥ c̃h. In practice we will use equidistant grid
points so that h = h j for all j = 1, . . . ,N + 1. We introduce the finite dimensional space

Xh := {v ∈ C0(Ī,R) : v|I j ∈ P1(Ī j), j = 1, · · · ,N + 1}

of continuous piecewise affine functions on the grid. The N + 2 scalar nodal basis
functions ϕ j ∈ Xh are defined by ϕ j(xi) = δi j. Let X0

h := span{ϕ1, . . . , ϕN} and Ih be the
usual linear interpolation operator.

The semi-discrete problem reads: find uh(·, t) ∈ Xh, wh(·, t) ∈ X0
h , such that uh(0, t) = α,

uh(1, t) = β, uh(·, 0) = Ihu0 and∫
I

uht√
1 + u2

hx

ϕh dx = −

∫
I
g′(uhx)ϕhx + ε2w2

h
uhxϕhx

(1 + u2
hx)3/2

− 2ε2 whxϕhx

(1 + u2
hx)3/2

dx ∀ϕh ∈ X0
h ,

(8.5)∫
I

wh√
1 + u2

hx

ψh dx = −

∫
I

uhx√
1 + u2

hx

ψhx dx ∀ψh ∈ X0
h . (8.6)

Note that because no integration by parts was used in the derivation of the first variation
a discrete analogue of (8.4) can immediately be obtained also for the semi-discrete
problem.

For the time discretization we follow ideas given in [11] and provide a semi-implicit
scheme. Let τ be the time step. For a generic function f we denote its evaluation at the
m-th time level tm = mτ by f m = f (·, tm). The discrete problem can be formulated as
follows: compute um+1

h ∈ Xh and wm+1
h ∈ X0

h so that um+1
h (0) = α, um+1

h (1) = β and∫
I

um+1
h − um

h

τ

ϕh

Qm
h

+

∫
I
g′(um

hx)ϕhx (8.7)

+ ε2
∫

I

(wm
h )2

(Qm
h )3 um+1

hx ϕhx − 2ε2
∫

I

wm+1
hx

(Qm
h )3ϕhx = 0 ∀ϕh ∈ X0

h

and ∫
I

wm+1
h

Qm
h
ψh +

∫
I

um+1
hx

Qm
h
ψhx = 0 ∀ψh ∈ X0

h , (8.8)

where Qm
h =

√
1 + (um

hx)2.

As initial data we use u0
h = Ihu0 and w0

h, which is computed from∫
I

w0
h

Q0
h

ψh +

∫
I

u0
hx

Q0
h

ψhx = 0 ∀ψh ∈ X0
h .
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By using the expansions

um
h =

N∑
j=1

Um
j ϕ j + αϕ0 + βϕN+1, wm

h =

N∑
j=1

Wm
j ϕ j

and setting Um = (Um
1 , . . . ,U

m
N ), Wm = (Wm

1 , . . . ,W
m
N ), as well as

Mm
i j =

∫
I

ϕiϕ j

Qm
h
, Em

i j =

∫
I

ϕixϕ jx

(Qm
h )3 , Am

i j =

∫
I

ϕixϕ jx

Qm
h

, Bm
i j =

∫
I

(wm
h )2

(Qm
h )3ϕixϕ jx,

we can write the linear systems (8.7) and (8.8) in the form

1
τ

Mm(Um+1 − Um) + ε2BmUm+1 − 2ε2EmWm+1 = Rm
u (8.9)

MmWm+1 + AmUm+1 = Rm
w , (8.10)

where for h sufficiently small we have that

Rm
u =



−
∫

I g
′(um

hx)ϕ1x − ε
2α

∫
I

(wm
h )2

(Qm
h )3ϕ0xϕ1x

...

−
∫

I g
′(um

hx)ϕ jx
...

−
∫

I g
′(um

hx)ϕNx − ε
2β

∫
I

(wm
h )2

(Qm
h )3ϕ(N+1)xϕNx


, Rm

w =



−α
∫

I
ϕ0xϕ1x

Qm
h

0
...
0

−β
∫

I
ϕ(N+1)xϕNx

Qm
h


.

Thus we need to compute(
1
τ

Mm + ε2Bm + 2ε2Em(Mm)−1Am
)

Um+1 =
1
τ

MmUm + 2ε2Em(Mm)−1Rm
w + Rm

u .

(8.11)

We solve this system by a conjugate gradient method. In the practical computations we
replace (Mm)−1 with the inverse of the diagonal matrix M̃m which is obtained from Mm

by mass lumping.

In practice stability issues can be overcome by choosing τ ≤ ch2 and ε ≤ ch. For the
case that we do not wish to couple ε and h, and still have a time step restriction of type
τ ≤ ch2, it is essential to choose “good” initial data.

9 Numerical simulations

In the following we describe the anisotropy functions that have been used for the nu-
merical simulations.

9.1 A one-parameter family of anisotropies

The boundary of the Frank diagram ∂Fa := {ξ ∈ R2 : γ(ξ) = 1} is described paramet-
rically by γ( f (θ) cos θ, f (θ) sin θ) = 1 where

f (θ) = 4 − a sin2(θ), θ ∈ [0, 2π], a ∈ [0, 4).
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Figure 4: Frank diagram and plot of the map g for the anisotropy discussed in Subsec-
tion 9.1 (left) for a = 0, 4/3, 2, 3.7 and Subsection 9.2 (right)

We will show below that for a ≤ 4/3 the Frank diagram is convex, thus we will be

interested in the anisotropies with a ∈ (4/3, 4). From γ(cos θ, sin θ)
(2.6)
= 1

f (θ) and
y
√
y2+1

= cos θ, − 1√
y2+1

= sin θ for θ ∈ (π, 2π), we deduce that for y ∈ R the map

g is given by

g(y) =

√
y2 + 1 γ

 y√
y2 + 1

,−
1√
y2 + 1

 (2.6)
=

√
y2 + 1
f (θ)

=
(y2 + 1)3/2

4y2 + 4 − a
.

In Figure 4 (left) we show a plot for the Frank diagram and the map g for different
values of a. A straightforward calculation gives

g′(y) =
3y

√
y2 + 1

4(y2 + 1) − a
−

8y(y2 + 1)3/2

(4(y2 + 1) − a)2 =
4y(y2 + 1)3/2 − 3ay

√
y2 + 1

(4(y2 + 1) − a)2 ,

therefore we infer that

for a ∈ [0, 4/3] : g′(y) = 0 iff y = 0,

for a ∈ (4/3, 4) : g′(y) = 0 iff y = 0 or y±G := ±

√
3
4

a − 1.

We have that g(0) = 1
4−a and g(y±) =

( 3
4 a)3/2

2a . Further one calculates that

g′′(y) =
8(a + 2)y4 + 2y2(3a2 − 4a + 16) + (4 − a)(4 − 3a)

(4(y2 + 1) − a)3
√
y2 + 1

.

Note that 3a2−4a+16 ≥ 0 for all a ∈ R. Moreover a+2 ≥ 0 for 0 ≤ a < 4. For a ≤ 4/3
it is obviously g′′(y) ≥ 0 for all y ∈ R. For a ∈ (4/3, 4) we have that (4−a)(4−3a) < 0,
and therefore the solutions of g′′(y) = 0 are given by

y±L := ±

√
−(3a2 − 4a + 16) +

√
(3a2 − 4a + 16)2 − 8(a + 2)(4 − a)(4 − 3a)

8(a + 2)
.

In particular g′′(y) ≤ 0 for y ∈ [yL, yL]. Note that for a ∈ (4/3, 4), we have that
LUS = (−yL, yL) and GUS = (−yG, yG).
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9.2 A non-convex anisotropy with minima in ±1

Sometimes it is convenient to have an anisotropy function g that takes its minima at
prescribed values, for instance at y = ±1. Define

g(y) =

{ 1
8 (y − 1)2(y + 1)2 + 1, |y| ≤ 1√

1 + (|y| − 1)2, |y| > 1

Indeed g(y) = 1 if and only if y = ±1. A straightforward computation gives

g′(y) =


1
2y(y2 − 1), |y| < 1

(|y|−1)
√

1+(|y|−1)2
sgn(y), |y| > 1 g′′(y) =

{ 1
2 (3y2 − 1), |y| < 1

1
(1+(|y|−1)2)3/2 , |y| > 1 .

Note that g ∈ C2(R), and g′′(y) = 0 if and only if y = ± 1
√

3
. Thus we have that

LUS =

(
−

1
√

3
,

1
√

3

)
, GUS = (−1, 1).

Now we construct the associated map γ. Using the fact that γ should be homo-
geneous of degree one we deduce that for x ∈ R and y < 0 the map γ is given
by γ(x, y) = −yg

(
− x
y

)
. For x ∈ R and y > 0 set γ(x, y) := γ(x,−y). Finally

γ(±1, 0) := limz→±∞
g(z)
√

1+z2 = 1, thus γ(x, 0) = |x|. Summing up we have that

x ∈ R, y < 0 : γ(x, y) =

 −
1
8y

(
x
y

+ 1
)2 (

x
y
− 1

)2
− y,

∣∣∣∣ x
y

∣∣∣∣ ≤ 1

−y
√

1 + (| x
y
| − 1)2,

∣∣∣∣ x
y

∣∣∣∣ > 1

x ∈ R, y = 0 : γ(x, y) = |x|

x ∈ R, y > 0 : γ(x, y) = γ(x,−y).

One can verify that γ is continuous on R2 and homogeneous of degree one. Moreover
γ ∈ C2(R2 \ {0} ∩ {(x, y) ∈ R2 : y ≤ 0}). A plot for γ and g is given in Figure 4 (right).

9.3 Numerical experiments

Next we describe some of the experiments that we have performed.

Test 1 - Anisotropic Mean Curvature Flow We choose the initial curve to be

u0(x) = x2 + 0.6x, x ∈ [0, 1],

and let it develop solely by anisotropic mean curvature (therefore we set ε = 0) with
Dirichlet boundary conditions. The anisotropy function chosen is the one described in
Section 9.2. Since u0x(x) ∈ R \ LUS for all x ∈ [0, 1] we expect a forward parabolic
behaviour. Indeed the curve straightens up to a line, which is a steady state. To avoid
stability issues we chose τ = h3/2.

Test 2 - First formation of wrinkles If

ΣL(u0) = {x ∈ [0, 1] : u0x(x) ∈ LUS} , ∅

then formation of wrinkles is expected (see Section 7) and in fact it is also experi-
mentally observed. This phenomenon is characterized by a rather drastic drop in the
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energy and by the fact that wrinkles appear and are never observed to leave the region
ΣL(u0). In the following we show results for different choices of anisotropy functions
and initial curves.

Test 2a Here we experiment with the anisotropy function given in Section 9.2, for
which LUS =

(
−1/
√

3, 1/
√

3
)
. Similarly to [4, § 6.2] we choose the initial curve

to be

u0(x) =
1
4

sin(2πx) +
π

2
x, x ∈ [0, 1]. (9.1)

A plot for u0 is given in Figure 15 (left). A straightforward calculation gives ΣL(u0) =

(xL, 1 − xL), where xL = 1
2π arccos( 2

π
√

3
− 1) ' 0.3589748. We choose time step τ =

h2/100 and ε = 10−4, where h = 10−3. In the three shots of Figure 5 we zoom on
the evolution of the first wrinkles at the times t = 6.42 × 10−6, t = 1.642 × 10−5,
t = 9.445 × 10−5; the horizontal bar indicates the region ΣL(u0).

Test 2b For the next test we choose again the initial curve (9.1), the anisotropy from
Section 9.2, τ = h2/100, where h = 10−3/8, and ε = 1.25 ·10−7. We show the evolution
in Figure 6 (left). Compared to Test 2a, where (the grid size h and) the parameter ε is
not as fine as in this case, we observe that the oscillations strongly intensify. In view
of the expected wavelength of size O(ε) (see Section 7) this is actually not surprising.
Finally in Figure 7 we zoom on a wrinkle at time t = 1.5620313 ·10−6 and observe that
the slope is basically ±1.

Test 2c Here we choose the anisotropy function described in Section 9.1 with a = 3.7.
In this case LUS ' (−0.15767616, 0.15767616), GUS ' (−1.33229126, 1.33229126).
As a start function we have chosen the map (see Figure 8 (left))

u0(x) = 3x5 − 8x4 + 6x3, x ∈ [0, 1],

for which we have that ΣL(u0) ' [0, 0.1029975194). For this experiment we set τ =

h3/10 and ε = 10−4, where h = 10−3. In Figure 9 we observe how the wrinkles invade
ΣL(u0). A plot for the energy Eε in dependence of time is given in Figure 8 (right).
Note that for a discrete curve um

h the energy in practice is calculated by

Eε(um
h ) =

∫
I
g(um

hx) dx + ε2
∫

I

(wm
h )2√

1 + (um
hx)2

dx.

Test 3 - Discontinuity of the energy at t = 0 Next we want to investigate the be-
haviour of the flow at initial times and for ε → 0. Similarly to [4, § 6.2] we compute
the quantities

t 7→ Eε(uεh(·, t))

t 7→ dε(t) :=
‖u0 − uεh(·, t)‖L2(0,1)

‖u0‖L2(0,1)
,

t 7→ f ε(t) := 1 −
Eε(uεh(·, t))

Eε(u0h)
.

for ε → 0. In [4, § 6.4] the authors perform this test using an anisotropy function
similar to the one depicted in Section 9.2 and initial curve u0(x) = x/2. This curve is
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Figure 5: Test 2a - Evolution at time t = 6.42×10−6, t = 1.642×10−5, t = 9.445×10−5

(from the top to the bottom); the horizontal bar indicates the region ΣL(u0).
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a stationary unstable solution for the flow. The authors explain that despite this fact
they observe (numerically) the wrinkles phenomenon and that the latter is probably
induced by round-off errors and the instability property of the initial map. With our
discretization (and anisotropy from Section 9.2) the map u0(x) = x/2 is stationary also
in the discrete setting.

For the next experiments we choose the initial curve

u0(x) =
sin(2πx)

20π
, x ∈ [0, 1], (9.2)

and the anisotropy function given in Section 9.2. For fixed time step τ = 10−10 and
h = 10−3 we test for

ε1 = 2 · 10−3, ε2 = 10−3, ε3 =
1
2
· 10−3.

Note that ΣL(u0) = [0, 1] and, as expected, wrinkles develop in the whole domain. A
plot of the evolution for ε1 is given in Figure 10. A plot for Eε, f ε, and dε for the above
choices of ε is shown in Figure 11. A comparison of the plots presented in Figure 11
shows that the rapid decrease in the energy takes place closer and closer to the origin
when ε → 0. This induces us to believe that as ε approaches zero there should be
some sort of discontinuity of the energy at t = 0. In Figure 12 the plot of the map
ε 7→ T (ε), where T (ε) denotes the time at which the energy Eε starts to drop, suggests
that T (ε) ' cε2 (the values for T (ε) are read from Figure 11). These facts have already
been observed in [4] (see also [4, Conjecture 4.1]).

Test 4 - Resolution of wrinkles With the next experiment we want to show that for
a fixed ε > 0 a definite number of wrinkles is to be expected and that the resolution
of the wrinkles improves by letting h → 0. Indeed, following the discussion on the
wrinkle phenomenon in Section 7, we expect the wavelength l of a point y ∈ ΣL(u0) to
be something like

l(y) =
4επ√

−g′′(y)(1 + y2)5/2
.

For the initial curve (9.2), ε = 10−3

2 , and the anisotropy function given in Section 9.2,
the theoretically predicted number of wrinkles is approximately 112. For time step
τ = h2

104 and grid size h1 = 10−3 and h2 = 1
2 10−3, we count 116 and 115 wrinkles

respectively (at time t = 0.0003). In Figure 13 we show the evolution at t = 0.0003, a
time for which wrinkles have already invaded the whole region. Notice the improved
wrinkles resolution for h2.

Test 5 - Wavelength Following the above considerations on the wavelength of the
wrinkles, we expect the number of wrinkles to double whenever we halve the value
of ε. In Figure 14 we show that this is exactly the case. For this experiment we have
chosen the same initial curve, anisotropy, time step, ε, and grid size as in Test 3.

Test 6 - Long time computation Here we show the long time computation for Test 2a.
In Figure 15 we observe that the flow develops as expected towards a line (a minimum
for the energy Eε). In Figure 16 we show another two details of the evolution showing
the shrinking of the wrinkled region.
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Figure 10: Test 3 - Evolution for ε = 2·10−3 at times t0 = 0 and t1 = 0.0015, t2 = 0.002,
t3 = 0.0021, t4 = 0.0028, t5 = 0.0036, t6 = 0.0059.
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the time axis.
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Figure 12: Test 3 - Plot of the function ε → T (ε) against the parabola 517 · x2 in
logarithmic scale.
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Figure 14: Test 5 - For the choices of ε1 = 2 · 10−3, ε2 = 10−3, ε3 = 1
2 · 10−3 we

show the evolution in the interval [0.14, 0.31] at time t1 = 0.0044, t2 = 0.0014401,
and t = 0.0002509 respectively. The times are chosen so that for all three experiments
the discrete energy Eε equals approximately 1.08689 (cf. the plot of the Energy Eε

in Figure 11) and wrinkles have fully developed in the region considered. A zoom is
presented in the right figure.
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